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The Facility for Rare Isotope Beams

A Brief Overview
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National Superconducting Cyclotron 
Laboratory (NSCL)

▪ World-Leading Nuclear Physics
• 10% of US Nuclear Ph.D.s

• #1 US Physics Graduate Program 
for Nuclear Physics (US News and 
World Report, 2010)

• ~400 employees on the campus of 
Michigan State University operated 
by the National Science Foundation

• International User community of 
over 700

• Capable of producing up to         
170 MeV/u rare isotope beams 
through thin target nuclear 
fragmentation
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NSCL Facilities
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FRIB as the Future

▪ FRIB is a superconducting driver linear accelerator that will replace 
the Coupled Cyclotron Facility (CCF)
• Primary beam power upgrade from 1-2 [kW] to 400 [kW]

• Maximum Energy upgrade from 160 to 200 (400) [MeV/u] for Uranium

▪ Integrates into the existing CCF experimental program
• Secondary beams injected directly into reconfigured A1900 fragment 

separator for use by existing and expanding scientific program
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FRIB Driver Linac
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Low Beta Superconducting Resonators

A Introduction to Quarter Wave and Half Wave 
Resonators and their Figures of Merit
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Quarter Wave Resonators

▪ Coaxial Resonator
• Effective open and short 

termination

▪ Low Frequency Structure
• Allows for efficient acceleration 

of low beta beams

▪ Accelerating Field
• Two gap structure (Pi-Mode like)

▪ Steering
• Asymmetric design leads to 

slight beam steering

▪ Open end for 
access/processing
• Open end for cavity processing 

and inspection
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Half Wave Resonators

▪ Coaxial Resonator
• Two effective short 

terminations

▪ Higher Frequency 
Structure than QWR

▪ Accelerating Field
• Two gap structure 

(Pi-Mode like)

▪ HWR v. QWR
• Higher optimum beta

• No beam steering

• Double the losses

• No easy access
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QWR and HWR usage for FRIB

▪ Transit Time Factor is a measure of 
the loss of acceleration from the 
fields varying with time
• More synchronized gaps reduces the 

velocity range of particles you can 
efficiently accelerate

▪ Flexible Primary Beam
• FRIB is designed to accelerate 

anything from Oxygen to Uranium

• 2-gap structures offer this flexibility
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Uranium



▪ Electromagnetic Figures of Merit

• These simulated quantities are 
required to interpret cavity test data

• These values may not accurately 
represent the reality of a cavity

▪ Performance Limits
• High surface electric fields give more 

risk of field emission, tighter 
processing tolerances (~30 [MV/m])

• High surface magnetic fields limit 
ultimate cavity performance at 
quench field (~120 [mT] for low beta)

How are cavity designs judged?

▪ Efficiency Figures of Merit
• R/Q (Effective Shunt Impedance)
»Measure of how effectively the cavity 

can transfer its stored energy to the 
beam

• Geometry Factor (Quality Factor)
»Measure of how efficiently the cavity 

stores energy

• Transit Time Factor
»Measure of possible acceleration lost 

by time-varying fields (not as critical 
for SRF cavities)
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Judging Mechanical Behavior

▪ The cavity is not static and 
unchanging in operation
• The cavity will have a variety of 

pressures exerted on it, and the 
resulting deformation may shift the 
cavity frequency

• These shifts in cavity frequency 
must be understood and optimized 
to give the best performance in 
operation

▪ Relationship between applied 
pressures and deformation 
depends strongly on mechanical 
design and fabrication
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Cavity Tuning

▪ Tuning Parameters
• Our HWR designs are tuned through beam port 

deformation

• Force is applied symmetrically on the beam ports

• Force required, resulting deformation, and 
frequency shift are simulated

• These numbers are used to drive tuner design
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Pressure Sensitivity

▪ Helium bath pressure sensitivity
• Cavity will be cooled by liquid helium 

at ~28 torr, but this will vary

• Varying pressure will deform the 
cavity

• This deformation cannot affect the 
cavity frequency more than the 
LLRF can control it

• Desired shift is |df/dP| < 2 Hz/torr

▪ Mitigation Techniques
• Overall stiffening can be used to 

improve performance (expensive)

• Deformation in magnetic and electric 
regions contribute opposite shifts

• Careful choice of stiffening can be 
used to tune these shifts, giving very 
small |df/dP|
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Lorentz Force Detuning

▪ Cavity/Field Interaction
• The fields in the cavity interact with the surface 

currents and charges they induce, inducing force on 
the cavity

• Note: PdV is always positive, meaning Δf is always 
negative

▪ Mitigation Techniques
• Compensation cannot be used, as with df/dP

• Overall design philosophy of a very stiff cavity design 

• CW operation allows larger tolerance

• KL > -3 [Hz/(MV/m)2] is desired

Magnetic 

Hoop Force

Electric 

Coulomb 

Attraction
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▪ QWR Operational Experience:

▪ PIAVE-ALPI at INFN-Legnaro
• ~80 SRF cavities booster for a tandem

▪ ATLAS @ Argonne National Lab
• Countless contributions to the technology

▪ ISAC – II @ TRIUMF
• RIB Post Accelerator

▪ SPIRAL2 – Light Ions for RIB Production

▪ RεA3(6) – Under construction @ MSU

▪ Very Little for HWRs

▪ SARAF – Progress accelerating light beams

Historical Use of Low Beta SRF Resonators
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Experience with HWRs at 
Michigan State University

Prototyping and Testing
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322 [MHz], β = 0.29 HWR for RIA
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▪ Prototyped and Tested in Cryomodule
• Extremely simple construction

• Little electromagnetic optimization

• Achieved electromagnetic goals at 2K

• Poor mechanical performance
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322 [MHz], β = 0.53 HWR for FRIB

▪ Five HWR53s have been 
fabricated
• 1 was made in-house at NSCL

• 4 were ordered as subassemblies 
from industry (Roark & AES) and 
finished in-house

▪ Four cavities have been tested
• Three have achieved FRIB field and 

quality factor

• Quench limit is between 90 mT and 
110 mT (design Bpk ~75 mT)

▪ Testing has successfully 
demonstrated cleaning and 
processing equipment
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Fabrication
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▪ Subassemblies
• Outer Conductor

• Inner Conductor (w/drift tube)

• Beam Port Cups

• Short Plates

• Rinse Ports

• Coupler Ports



Cavity Design Cycle

▪ Cavity design is very complex
• Electromagnetic performance

• Electromechanical performance

• Mechanical performance

• Complexity/Repeatability of 
fabrication
» Forming/Trimming

»Welding

» Processing/Handling

• COST

▪ Simulated cavity is the GOAL
• Simulations have no imperfections

• Simulated results are used to 
interpret cavity test data

• The goal of cavity design is to have 
fabricated cavities converge toward 
simulated performance

Mechanical 
Design

Prototyping/ 
Testing

Simulation/
Optimization
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Cavity Test Setup and Goals

▪ Verify Cavity Performance

▪ Verify Effectiveness of Cavity 
Baking
• The cavity was baked for 10 hours 

at ~600ºC in vacuum to drive off 
hydrogen in the bulk material

• This hydrogen, introduced mostly 
during etching, forms lossy 
Niobium-hydrides if the cavity is 
cooled too slowly

• After first day of testing, cavity was 
warmed to ~100K and “soaked” at 
that temperature overnight

• The cavity was cooled and retested 
the second day of testing
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▪ Good electromagnetic 
performance

▪ Strong high field Q-slope
• Weld Quality?

▪ Repeatable quench limit
• ~93 [mT]

Cavity Testing Results
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Advanced Manufacturing Design

▪ Design Modifications
• Several modifications based on cavity 

testing and vender experience

▪ Subassembly Tolerances
• Welding presented a significant 

challenge depending on 
subassemblies tolerances

• Instead of tightening tolerances ($$$), 
a short straight section was added on 
the inner conductor

• This allowed a stacking/trimming step 
before welding for increased 
repeatability and quality of the weld

▪ Other changes
• Plungers removed, Drift tube simplified

J. P. Holzbauer 25



Half Wave Resonator Design:
Simulation and Optimization

A Worked Half Wave Resonator Design
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Electromagnetic Simulation

▪ Geometry Creation
• SolidWorks CAD software

• Appropriate choice of parameters for 
optimization

• Take advantage of symmetry

▪ Boundary Conditions
• Perfect Electric Conductor
»Normal electric fields, tangential 

magnetic fields

»RF surfaces

• Perfect Magnetic Conductors
»Normal magnetic fields, tangential 

electric fields

»Generally symmetry planes (with 
exceptions, depending on the mode)

• RF losses
» Surface resistivity for dissipated power
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Computational Methods

▪Finite Element Solvers
• Cavity volume is broken into 

interlocking tetrahedral 
“elements”

• Fields inside of an element are 
assumed to have a simple form

• Matrix describing mesh is 
inverted to get 
eigenvalues/eigenvectors
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Coupled EM & Mechanical Simulations

▪ Accurate frequency shifts can be 
achieved from small mechanical 
deformations
• Mesh and solve eigenmode

• Mesh material space

• KEEP vacuum space mesh as 
extremely weak material

• Apply desired pressure and solve 
for deformation

• Change back to vacuum and 
resolve eigenmode to get frequency 
shift

▪ By perturbing the existing mesh, 
extremely high accuracy can be 
achieved, down to the Hz level
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Starting Geometry

▪ This geometry has the 
appropriate features for 
optimization
• Cylindrical magnetic field region 

(with straight section!)

• Shaped electric field region

• Cylindrical outer conductor (stiff!)

• Beam port cup to give proper βopt
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Geometrical Optimization

▪ Two Stages of Variable Optimization:
• “Large” Variables (e.g. IC/OC Radius)

• “Local” Variables (e.g. Drift tube fillet)

▪ All Design Is Compromise

▪ Frequency and βopt must be 
consistent to compare different 
designs
• Cavity length will be used to correct 

frequency

• Beam port cup will be used to correct 
beta

▪ 322 [MHz], 1.9 [MV], β = 0.29
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Variable 1: Outer Conductor Radius

▪ Larger Outer 
Conductor 
Improves 
Efficiency
• Voltage for given 

stored energy 
driven by this 
distance

• 145 [mm] 
maximum set by 
FRIB lattice
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Short Plate Geometry
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▪ Flat Short Plate Implications
• Increased rounding improves peak magnetic field and Geometry Factor

▪ Fully Rounded Short Plate
• Improved magnetic field distribution

• Easier to manufacture

• Most robust geometry that can be made with formed sheet Niobium

• Improved draining during cavity processing



Variable 2: Magnetic Field Region IC Radius

▪ Reducing the Peak Surface Magnetic Field
• Increasing the inner conductor radius decreases 

Bpk/√U

• Almost no change in electric field region

▪ Significant Decrease in Efficiency
• Both Geometry Factor and R/Q drop dramatically with 

increased inner conductor radius

• Radius of 65 [mm] was chosen as a compromise 
between these two effects
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Variable 3: Electric Field Region IC Width

▪ IC Width is Relatively 
Insensitive
• Choice of large, flat region on IC 

makes cavity figure of merit 
relatively insensitive to its width

• This design is also quite straight-
forward to manufacture (easy 
coining for drift tube)

• This also means Epk should be 
insensitive to fabrication errors

• Compromise of R/Q and Epk at a 
half-width of 30 [mm]
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Final Optimization – Beam Port Cup
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▪ Beam Port Cup Shape Dominates 
Peak Surface Electric Field
• The cup was optimized to give 

fields that are as uniform as 
possible, minimizing peak surface 
electric fields

• Also helps shape accelerating 
electric field, improving R/Q



Cavity Processing

▪ Cavity Etching and High Pressure 
Rinsing
• While the beam ports and RF ports 

are available, the access they 
provide is unsatisfying for providing 
reliable cavity surfaces

▪ Minimizing Perturbation
• These ports perturb the magnetic 

field of the cavity
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Design Comparison

▪ Comparing the design 
presented, the improvement is 
obvious
• Peak surface magnetic field is 

significantly decreased by more 
sophisticated construction 
methods

• Efficiency improved with 
increased outer conductor 
diameter and beam port cups

• Aperture increased by 1/3 
because of evolving beam 
dynamics requirements

• Designed specifically to be 
mechanically robust

0.29 for RIA
New 0.29 

Design

opt 0.285 0.290

f (MHz) 322.0 322.0

Va (MV) 1.9 1.9

Ep (MV/m) 30.0 30.5

Bp (mT) 83 56

R/Q () 199 231

G () 61 78

Design Q0 6.1×109 7.8×109

Aperture (mm) 30 40

U (joules) 8.9 7.7
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Achieving 322.000000 [MHz] ± 30[Hz]

▪ 322 MHz = In Operation
• 300K -> 2K (df/dT)

• 1 atm -> 28 torr (df/dP)

• Air -> Vacuum (df/dε)

• Installation of FPC/Tuner (Assembly & 
Preloading)

• Etching

• Welding of Helium Vessel

▪ Positioning the Beam Port Cups
• This welding step allows adjustment of the 

cavity frequency and field flatness (~100s 
[kHz])

• Plastic deformation of beam ports for final 
tuning (~100 [kHz])

• Tuner range = ± 75 [kHz]

• Tuner resolution ~1 [Hz]

• Mostly based on experience (prototyping!)

• Process must be repeatable
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Cavity Stiffening

▪ It is desirable to make the cavity entirely from 2 
[mm] sheet Niobium
• However, electromechanical performance isn’t 

satisfactory

• The most obvious first stiffening is to use thicker 
material for the beam port cup

▪ With 3 [mm] beam port cups, additional stiffening 
was required
• A simple stiffening ring (2 [mm] thick) was added to 

the inner conductor, and its position was optimized
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▪ Electromagnetic performance is close to optimal
• The peak surface magnetic field was intentionally raised slightly to improve efficiency 

(could be reversed)

• With demonstrated repeatability and quality of cavity processing, a more ambitious 
accelerating voltage may be possible

▪ Electromechanical performance is acceptable
• Beam port tuning sensitivity is very high

• If tuners can be designed such that minimum step size is in applied force, the beam 
port cups can be stiffened to achieve the required coefficient

• Alternative tuning methods should be investigated

▪ Mechanical design is quite robust
• Both high magnetic and high electric field regions have been designed to be 

insensitive to most manufacturing errors

• Overall cavity is quite stiff, requiring little additional stiffening

• Stiffening suggested should be straight-forward to include in cavity fabrications

• Changes to cavity design and addition of helium vessel should not required drastic 
changes in stiffening

Further Design Considerations
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Conclusions

▪ Resonator design is a coupled 
process
• Simulation, mechanical design, and 

prototyping are essential components 
for a successful final design

▪ Half Wave Resonators are a very 
new technology
• Much has been learned at MSU about 

HWR design

• A mature beta = 0.29 HWR design has 
been presented, but some questions 
need to be answered during mechanical 
design and prototyping
» Tuning

» Helium Vessel design

» Goal Bench Frequency

• The same procedure presented here 
can be repeated as the design changes
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Thanks for your attention!

Thanks for the direct support of these people at MSU
Joe Binkowski

Lee Harle

Sam Miller

John Popielarski

Mike Syphers

Jon W9
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Differential Etching

▪ If desired, differential etching can be 
used to increase HWR frequency
• HWR frequency shift from etching is 

more dominantly negative than QWRs

• With careful choice of acid fill level, a 
positive frequency shift can be 
achieved

• While this study was done on an older 
geometry, it is likely similar to current 
designs

• This shift has yet to be demonstrated 
experimentally (at MSU)

• -1383 [Hz/µm] is the etch rate for an 
ideal HWR at 322 MHz

• 0 [Hz/µm] is the rate for the ideal QWR
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Multi-Harmonic Buncher

▪ Three Harmonics in Two 
Resonators
• First three harmonics of a 

sawtooth wave

• Efficient bunching of a DC beam 
from ion source

DC Beam Bunched Beam

Transferred wave 

structure of three 

harmonics is evident

(4th Harmonic only 

+2-3% capture)

Outer Gap fields 

integrate out
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